Методические рекомендации по подготовке учащихся к выполнению заданий повышенного и высокого уровней сложности ЕГЭ по химии

Сажнева Татьяна Владимировна, к.х.н., доцент РО РИПК и ППРО

Демоверсия КИМ ЕГЭ 2018 г. по химии www.fipi.ru

Структура части 1 варианта принципиально не изменилась. Задания, включённые в эту часть работы, сгруппированы по отдельным тематическим блокам. В каждом из этих блоков присутствуют задания как базового, так и повышенного уровней сложности.

В тематическом блоке «Неорганическая химия» незначительно изменён порядок следования заданий базового и повышенного уровней сложности, появилось задание 9, представленное в формате на установление соответствия между реагирующими веществами и продуктами реакции.

Увеличено число заданий части 2 экзаменационной работы до 6: введены задания № 30 и № 31 с единым контекстом, ориентированные на проверку усвоения важных элементов содержания: «Реакции окислительно-восстановительные» и «Реакции ионного обмена».

Продолжительность выполнения экзаменационной работы составляет 3,5 часа (210 минут).

Задание 5. Классификация неорганических веществ. Номенклатура неорганических веществ (тривиальная и международная)

Установите соответствие между формулой вещества и классом/группой, к которому(-ой) это вещество принадлежит: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА ВЕЩЕСТВА

КЛАСС/ГРУШІА

A) H₃PO₄

кислые соли

Б) KAlO₂

кислоты

B) K₂HPO₄

3) средние соли

основания

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:

A	Б	В

Задание 6. Характерные химические свойства простых веществ (металлов и неметаллов). Характерные химические свойства оксидов: основных, амфотерных, кислотных.

Пример 1:

Из	предложе	нного	перечня	веществ	выберите	два	вещества,	c	каждым	ИЗ
кот	орых взаи	модей	ствует азо	OT.						

- 1) водород
- литий
- вода
- 4) соляная кислота
- 5) хлорид калия

Запишите в поле ответа номера выбранных веществ.

Ответ:

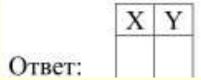
Задание 6. Характерные химические свойства простых веществ (металлов и неметаллов). Характерные химические свойства оксидов: основных, амфотерных, кислотных.

Пример 2:

Из предложенного пере	ня веществ	выберите дв	а оксида,	которые	реагируют
с оксидом фосфора(V).					

- оксид серы(VI)
- 2) углекислый газ
- 3) оксид кальция
- 4) оксид серы(IV)
- 5) оксид натрия

Запишите в поле ответа номера выбранных веществ.


Ответ:

Задание 7. Характерные химические свойства оснований, амфотерных гидроксидов, кислот, солей: средних, кислых, основных; комплексных (на примере гидроксосоединений алюминия и цинка). Электролитическая диссоциация электролитов в водных растворах. Сильные и слабые электролиты. Реакции ионного обмена.

В одну из пробирок с осадком гидроксида алюминия добавили сильную кислоту X, а в другую – раствор вещества Y. В результате в каждой из пробирок наблюдали растворение осадка. Из предложенного перечня выберите вещества X и Y, которые могут вступать в описанные реакции.

- 1) бромоводородная кислота
- гидросульфид натрия
- 3) сероводородная кислота
- 4) гидроксид калия
- гидрат аммиака

Запишите в таблицу номера выбранных веществ под соответствующими буквами.

Задание 8. *Характерные химические свойства* неорганических веществ

Установите соответствие между формулой вещества и формулами реактивов, с каждым из которых оно может взаимодействовать.

ФОРМУЛА ВЕЩЕСТВА	ФОРМУЛЫ РЕАКТИВОВ
A) Cl ₂	1) NaHCO ₃ , Zn, HF
Б) Al ₂ O ₃	2) O ₂ , HBr, KMnO ₄
B) Ca(OH) ₂	3) O ₂ , H ₂ , Li
Γ) Na ₂ SO ₃	4) NaBr, Ba(OH) ₂ , Fe
	5) HCl, NaOH, CaO

(4512)

Задание 9. Характерные химические свойства неорганических веществ

Пример 1

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА

- A) Mg и H₂SO₄(конц.)
- Б) MgO и H₂SO₄
- В) S и H₂SO₄(конц.)
- Г) H₂S и O₂(изб.)

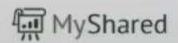
ПРОДУКТЫ РЕАКЦИИ

- MgSO₄ и H₂O
- MgO, SO₂ и H₂O
- Н₂S и Н₂O
- SO₂ и H₂O
- 5) MgSO₄, H₂S и H₂O
- SO₃ и H₂O

Запишите в таблицу выбранные цифры под соответствующими буквами.

	A	Б	В	Γ
Ответ:				

Система ведущих понятий темы


- Электроотрицательность
- Степень окисления
- Процессы окисления и восстановления, как переходы электронов
- Окислители и восстановители с точки зрения изменения степени окисления
- Кто может быть окислителем а кто восстановителем
- Алгоритм выбора окислителя и восстановителя и составление уравнения реакции ОВР

Что такое электроотрицательность?

Электроотрицательность – это свойство оттягивать к себе валентные электроны от других атомов.

Элементы с большей электроотрицательностью будут оттягивать общие электроны от элементов с меньшей электроотрицательностью.

FONCIBRSCPSIIAs H уменьшение электроотрицательности

Выводы:

- Электроотрицательность (ЭО) это важное свойство атомов химических элементов.
- Зная электроотрицательность (ЭО) элемента, можно определить его принадлежность к металлам или неметаллам.
- Зная положение элемента в периодической таблице можно определить, какой из элементов имеет большую или меньшую электроотрицательность (ЭО).

Окислители и восстановители

- Только окислители- это атомы элементов в своей положительной высшей степени окисления.
- Только восстановители это атомы элементов в своей низшей отрицательной степени окисления.
- Окислительно- восстановительную двойственность проявляют атомы элементов с промежуточной валентностью.

Окислитель восстанавливается, его степень окисления уменьшается

Восстановитель окисляется, его степень окисления увеличивается

$$2 \text{ Na}^0 + \text{Cl}_2^0 = 2 \text{ Na}^{+1} \text{ Cl}^{-1}$$

$$Na^0 - 1e = Na^{+1}$$

Восстановитель, окисление

$$Cl^{0} + 1e = Cl^{-1}$$

Окислитель, восстанавливается, восстановление

Классификация ОВР

Межмолекулярные $C + H2O \rightarrow H2 + CO$

Внутримолекулярные $4HNO3 \rightarrow 2H2O + 4NO2 + 02$

Диспропорционирования $4KClO3 \rightarrow 3KClO4 + KCl$

Важнейшие окислители:

 O_2 , Cl_2 , Br_2 , HNO_3 , H_2SO_4 (конц.), $KMnO_4$, MnO_2 , $K_2Cr_2O_7$, K_2CrO_4 , KCIO, $KCIO_3$, H_2O_2 , (соединения Fe(III))

Важнейшие восстановители:

металлы, H_2 , C, CO, сульфиды, иодиды, бромиды, а также H_2S , HI, HBr, HCI, NH_3 , PH_3 ; нитриты, сульфиты, соединения Fe(II), Cr(II), Cr(III), Cu(I), (H_2O_2)

Важнейшие окислители

Азотная кислота – примеры реакций:

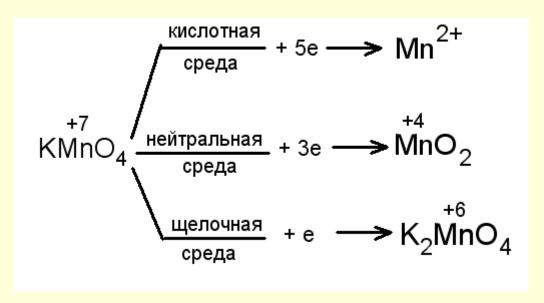
$$Cu + 4HNO_{3(конц)} \rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O,$$
 $3Cu + 8HNO_{3(разб)} \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O,$ $4Mg + 10HNO_{3(очень разб)} \rightarrow 4Mg(NO_3)_2 + NH_4NO_3 + 3H_2O.$

Концентрированная HNO_3 окисляет неметаллы до высших кислот: $S + 6HNO_{3(\text{конц})} \rightarrow H_2SO_4 + 6NO_2 + 2H_2O;$ $P + 5HNO_{3(\text{конц})} \rightarrow H_3PO_4 + 5NO_2 + H_2O;$ $C + 4HNO_{3(\text{конц})} \rightarrow CO_2 + 4NO_2 + 2H_2O;$ $CuS + 8HNO_{3(\text{конц})} \rightarrow CuSO_4 + 8NO_2 + 4H_2O;$ можно так: $CuS + 10HNO_{3(\text{конц})} \rightarrow Cu(NO_3)_2 + H_2SO_4 + 8NO_2 + 4H_2O.$

Важнейшие окислители:

концентрированная серная кислота

Чаще всего продуктом восстановления серной кислоты является SO_{2.}


$$2H_2SO_{4(\kappa_{OHIL})} + C \rightarrow CO_2 + 2SO_2 + 2H_2O;$$

$$2\text{FeO} + 4\text{H}_2\text{SO}_{4(\text{KOHIL})} \rightarrow \text{Fe}_2(\text{SO}_4)_3 + \text{SO}_2 + 4\text{H}_2\text{O}$$

При использовании <u>сильных восстановителей</u> (активных металлов, бромидов, иодидов) <u>возможна</u> запись S и H_2S в качестве продуктов восстановления H_2SO_4 , например:

$$8NaI + 5H_2SO_4 = 4I_2 + H_2S + 4Na_2SO_4 + 4H_2O$$

Перманганат калия и оксид марганца(IV)

$$2KMnO_4 + 5KNO_2 + 3H_2SO_4 = 2MnSO_4 + 5KNO_3 + K_2SO_4 + 3H_2O$$

 $2KMnO_4 + 3KNO_2 + H_2O = 2MnO_2 + 3KNO_3 + 2KOH$
 $2KMnO_4 + 16 HCI = 2MnCI_2 + 5CI_2 + 2KCI + 8H_2O$

MnO₂ обычно используют в кислой среде:

$$MnO_2 + 2NaBr + 2H_2SO_4 = MnSO_4 + Br_2 + Na_2SO_4 + 2H_2O$$

Хроматы и дихроматы чаще используют в кислой среде, восстановление протекает до соединений Cr(III):

$$K_2Cr_2O_7 + 3KNO_2 + 4H_2SO_4 = Cr_2(SO_4)_3 + 3KNO_3 + K_2SO_4 + 4H_2O_4$$

Важно, чтобы продукты реакции были выбраны с учетом характера среды!

При использовании кислородсодержащих соединений хлора в качестве окислителей атомы галогенов восстанавливаются до <u>устойчивой степени окисления -1</u>:

$$5KClO_3 + 6P = 5KCl + 3P_2O_5;$$

 $Cr_2O_3 + 3KClO + 4KOH = 2K_2CrO_4 + 3KCl + 2H_2O.$

* Экзаменуемый должен <u>знать названия</u> кислородсодержащих солей и кислот хлора: гипохлориты, хлориты, хлораты, перхлораты...

Для выполнения заданий 30, 31 используйте следующий перечень веществ:

сульфит натрия, вода, ортофосфат кальция, перманганат калия, нитрат бария. Допустимо использование водных растворов веществ.

30. Из предложенного перечня веществ выберите вещества, между которыми возможна окислительно-восстановительная реакция, и запишите уравнение этой реакции. Составьте электронный баланс, укажите окислитель и восстановитель.

Молекулярное уравнение: $3Na_sSO_s + 2KMnO_s + H_sO = 3Na_sSO_s + 2MnO_s + 2KOH_s$

Для выполнения заданий 30, 31 используйте следующий перечень веществ:

хлорид хрома(III), бихромат натрия, соляная кислота, карбонат магния, сульфат бария. Допустимо использование водных растворов веществ.

30. Из предложенного перечня веществ выберите вещества, между которыми возможна окислительно-восстановительная реакция, и запишите уравнение этой реакции. Составьте электронный баланс, укажите окислитель и восстановитель.

 $Na2Cr2O7 + 14HCl \rightarrow 3Cl2 + 2NaCl + 2CrCl3 + 7H2O$

Для выполнения заданий 30, 31 используйте следующий перечень веществ:

бихромат калия, сульфид натрия, серная кислота, хлориды магния и лития. Допустимо использование водных растворов веществ.

30. Из предложенного перечня веществ выберите вещества, между которыми возможна окислительно-восстановительная реакция, и запишите уравнение этой реакции. Составьте электронный баланс, укажите окислитель и восстановитель.

Молекулярное уравнение:

$$K_2Cr_2O_7 + 3Na_2S + 7H_2SO_4 = Cr_2(SO_4)_3 + 3S + 3Na_2SO_4 + K_2SO_4 + 7H_2O_4$$

Правила оформления ответов

1. ПРАВИЛЬНАЯ ЗАПИСЬ СТЕПЕНИ ОКИСЛЕНИЯ: ЗНАК-ЦИФРА 2. ПРАВИЛЬНАЯ ЗАПИСЬ ЗАРЯДА ИОНА: ЦИФРА-ЗНАК (СМОТРИ В ТАБЛИЦУ РАСТВОРИМОСТИ)

Запись электронного баланса

$$K_2Cr_2O_7 + KBr + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + Br_2 + \dots$$

Допустимы записи:

$$2Cr^{+6} + 6\bar{e} \rightarrow 2Cr^{+3}$$
 1 $2Br^{-1} - 2\bar{e} \rightarrow Br_2$ 3 $u\pi u$

$$Cr^{+6} + 3\bar{e} \rightarrow Cr^{+3}$$
 1
Br⁻ - $\bar{e} \rightarrow Br^{0}$ 3

$$2Cr^{+6} + 6\bar{e} \rightarrow 2Cr^{+3} \begin{vmatrix} 1 \\ 2Br^{-} - 2\bar{e} \rightarrow 2Br \end{vmatrix}$$

Недопустима запись:

$$\operatorname{Cr}_{2}^{+6} + 6\bar{e} \rightarrow 2\operatorname{Cr}^{+3}$$

Количество принятых и отданных электронов может быть указано над стрелкой.

Задание 31

Реакции в растворах электролитов идут практически до конца в том случае, если происходит связывание исходных ионов с образованием:

- слабого электролита,
- осадка малорастворимого вещества,
- газообразного продукта.

Ионные уравнения реакций отражают суть тех изменений, которые происходят при взаимодействии веществ – электролитов.

В ионном уравнении реакции хорошо растворимые сильные электролиты записывают в виде соответствующих ионов, а слабые электролиты, нерастворимые вещества и газы – в молекулярном виде.

В сокращённом ионном уравнении дробные или удвоенные коэффициенты <u>не допускаются</u>.

Слабый электролит	$\alpha, \%$ (C = 0,1M)
H_2SO_3	20
HF	8
HNO ₂	4
NH ₃ ·H ₂ O	1,4
CH ₃ COOH	1,4
H_2CO_3	0.2
H_2S	0,07

Задание 31

• Реакции образования гидроксокомплексов при взаимодействии растворов щелочей и растворимых солей цинка и алюминия также можно отнести к реакциям ионного обмена:

$$ZnSO_4 + 4NaOH = Na_2[Zn(OH)_4] + Na_2SO_4$$

 $Zn^{2+} + SO_4^{2-} + 4Na^+ + 4OH^- = 2Na^+ + [Zn(OH)_4]^{2-} + 2Na^+ + SO_4^{2-}$
 $Zn^{2+} + 4OH^- = [Zn(OH)_4]^{2-}$

•При взаимодействии *солей аммония* со щелочами допустимы записи NH₃·H₂O, NH₃ + H₂O, например:

$$(NH_4)_2SO_4 + 2KOH = K_2SO_4 + 2NH_3\cdot H_2O$$
 $2NH_4^+ + SO_4^{2-} + 2K^+ + 2OH^- = 2K^+ + SO_4^{2-} + 2NH_3\cdot H_2O$
 $NH_4^+ + OH^- = NH_3\cdot H_2O$ или
 $NH_4^+ + OH^- = NH_3 + H_2O$

Расчетные задачи проверяют:

- понимание химической сущности явлений и реакций, свойств веществ, характера их взаимодействия и закономерностей количественных отношений.
 - сформированность универсальных учебных действий, таких как умение работать с текстом, проводить анализ содержания задачи, определять физические величины, выполнять математические действия.

Умение решать расчетные задачи является основным показателем творческого усвоения предмета.

Как решать задачи

- 1. прочитай условие задачи, проанализируй и пойми текст
- 2. представь, не обращая внимания на цифровые данные, о чем говорится в условии (сюжет задачи)
- 3. составь для наглядности схему или картинку сюжета
- 4. запиши уравнения реакций, нужных для решения задачи (не забудь уравнять!!!)
- 5. повтори основной вопрос задачи
- 6. проставь цифровые данные задачи и составь план решения

Основные проблемы в решении задач

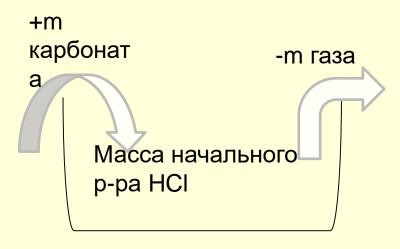
- 1. не понимают текст задания (не могут составить план решения)
- 2. не знают химических свойств веществ (не могут правильно составить необходимые для решения химические уравнения)
- 3. делают ошибки в вычислениях
 - в вычислении молярной массы
 - путают массу раствора и р-ренного в-ва
 - некорректно округляют полученные данные

Смысловое чтение

- Умение воспринимать текст, как единое смысловое целое (точно и полно понять содержание текста и практически осмыслить полученную информацию)
- Смысловое чтение предполагает владение читателем ключевыми понятиями, словами, фразами)
- Ключевое слово опорное слово в тексте, способное передать самое важное в содержании текста

Задания №33 условно можно разделить на «задачи на смеси» и задачи нахождения массовой доли продукта в растворе

• Пример первого типа задачи


- Смесь кремния и алюминия обработали избытком разбавленной серной кислоты. При этом выделилось 0,336л газа. Если этом же смесь обработать избытком раствора NaOH, то выделится 0,672л газа. Рассчитать массовую долю алюминия в смеси.
- В соответствии с алгоритмом составим схему сюжета условия

- Дальше составляем уравнения реакций, которые происходят
- 2AI + 3H2SO4 = AL2(SO4)3 + 3H2
- 2AI + 2NaOH +6H2O=2Na[AI(OH)4]+3H2
- Si +2NaOH +H2O =Na2SiO3 +2H2
- анализируя, где выделяется водород, составляем схему расчетов.

Методика решения задач на нахождение массовой доли продукта реакции

• Карбонат кальция массой 10г растворили в 150мл соляной кислоты (p=1,04г/мл) с массовой долей 9%. Какова массовая доля хлороводорода в образовавшемся растворе?

Некоторый УВ содержит 12,19% водорода по массе. Известно, что молекула этого углеводорода содержит один четвертичный атом углерода, а сам УВ может взаимодействовать с аммиачным раствором оксида серебра.

Алгоритм решения задач этого типа:

- 1. найти 6 всех элементов в веществе
- 2. из них найти моль атомов элементов

GD (C)
$$\longrightarrow$$
 m(C) \longrightarrow n(C)
GD (H) \longrightarrow m(H) \longrightarrow n(H)

- 3. составить молекулярную формулу вещества (иногда это простейшая)
- 4. с учетом дополнительных данных задачи найти истинную формулу (по значению молярной массы).
- 5. далее, используя знания о свойствах вещества, составляется структурная формула.

Применительно к данной задаче произведенные расчеты дают формулу С6Н10 вывод – это алкин, имеющий тройную связь в начале углеродной цепи.

ЗАДАЧИ НА ВЫВОД ФОРМУЛЫ по продуктам сгорания

При сжигании образца некоторого органического соединения массой 14,8 г получено 35,2 г углекислого газа и 18,0 г воды.

Известно, что относительная плотность паров этого вещества по водороду равна 37. В ходе исследования химических свойств этого вещества установлено, что при взаимодействии этого вещества с оксидом меди(II) образуется кетон.

На основании данных условия задания:

- 1) произведите вычисления, необходимые для установления молекулярной
- формулы органического вещества;
- 2) запишите молекулярную формулу исходного органического вещества;
- 3) составьте структурную формулу этого вещества, которая однозначно
- отражает порядок связи атомов в его молекуле.
- 4) составьте уравнение реакции

Единый государственный экзамен - 2017 Бланк ответов Nº 2 Pesege - 5 Дополнительный Flact Nº 1 о значения полей "Код региона". "Код предмета". "Название предмета" из БЛАНКА РЕГИСТРАЦИИ на задания с РАЗВЕРНУТЫМ ОТВЕТОМ, пишите аккуратно и разберчиво, соблюдая разметку страниць Не забудьте указать номер задания, на которое Вы отвечаете, например, 31 30. $C_{V2}^{+3} (504)_3 + 3 M_2 O_2^{-1} + 10 NaOH \Rightarrow 2 Na_2 C_F O_4 + 3 Na_2 SO_4 + 8 M_2 O_2^{-1}$. Bocconaudament $2C_F^{\frac{1}{3}} \xrightarrow{-6} 2C_V^{\frac{1}{6}} | 6 | 1$ skuchstenics. OKULUMENT $2O_2^{-1} + 2\frac{1}{5} + 2O_2^{-1} | 2 | 5 | 5$ bocconaudaments. Cr (Cr (Soy) 3 Za vier Cr 2) - Bocumandument 0 (moz za crem 0-1) - onurumens. 31. 1) 2NO+ 0, = 2NO2. 2) 4NO, + O, + 240 0 => 4HNOZ 3) FeO+4HNO2 = Fe(NO2) + NOA+2 N211 4) 2 Fe (NO2) 2 + 3 K2 CO3 + 3 N2O = 2 Fe (On) 31 + 3 CO2 (+6KNO3 32. 11CH2=CN-CN=CN2+N2 KOT. CN3-CN=CN-CN3. 2) 5 CN3 - CN = GH - CH3 + 8 KMn O4+ 12 N2 SO4 -> 10 CH3 - C 204 + 8 Mn SO4 + + 4K2 SO4 +12 H2O. 3) CM2-C=04+Cl2 Preparente CM2-C=04+ HCl. 4) CH2-0=04 +2NM3 -> CH2-c=04 + NM4CL. 5) 2 5m - C=0 + 8a(UH)2 -> (cn. -coo) 8a+2120 33. Fe + Cusou => Cul + Fesou) ([45]4 5420) = 12,52 man= 0,05 mars. m((4504)=0,05 man 1603 (usuy B regormanine => 2) V(Cy)= V (Fessy) = V (Cusoy) m ((u) = 0,75 mm. 642/mon = 3,22. m, (Fe) (paconloquebuerocs) =

При недостатке места для ответа используйте оборотную сторону бланка

HER 1818/88 1 HIN 18 HI & HI 11 H

= (MASS) 0,05.56=2,82

FeSO4 + Na2S = FeSJ + Na2SO4. $m(Na2S) = 1772 \cdot 0,1 = 11,72$) (Na2S) = $\frac{11,72}{782}$ (num = 0,15 mans.

FeSO48 negocinamine =>) (FeS) =) (FeSO4) m(FeS) = 0,08 num .882 (num > 4,42. $m_2(Na_2S)$ (ormalium via) = (0,15-0,05) .78 = 7,82. $m_1(Na_2S)$ (ormalium via) = (0,15-0,05) .78 = 7,82. $m_2(Na_2S)$ (ormalium i) + $m_1(Fe)$ + $m_1(p_1p_2)$ Na2S) - $m_1(a)$ - $m_1(fes)$ = 40+2,8+117-3,2-4,4=162,22 $m_2(Na_2S) = \frac{7,82}{782,22}$. 10090 = 5,1290Ornbern $m_2(Na_2S) = 5,1290$

34. 1) Thyenn gans 1007 between ba .

morger m(c) = 46,462 $\mathcal{V}(c) = \frac{45}{12} \frac{45}{12} = 3,7876$ more m(0) = 48,482 $\mathcal{V}(0) = \frac{45}{12} \frac{45}{12} = 3,7876$ more m(4) = 6,072 $\mathcal{V}(4) = \frac{6}{12} \frac{0.01}{12} = 6,072$ more

2) (C): V(4): V(0) = 3,7875: 3,03: 6,07 = 5:4:8.
2) (5 hs (14 - maneny ny mas grophymas)
2) 2-(n-cn-cn-cn-c=0 - cmaneny mas grophymas

4K2S04 + 12 120.

Единый государственный экзамен - 2017

Бланк отвенно в N2 2

Коа регион Коа предмета Название предмета

6 1 0 4 × и м

Резерв - 5

Дополнительный 2 7 4 9 9 0 6 7 5 5 8 7 1 Пист № 1

Перепиците значения полей "Код региона", "Код предмета", "Название предмета" из БЛАНКА РЕГИСТРАЦИИ Отвечан на задания с РАЗВЕРНУТЫМ ОТВЕТОМ, пишите аккуратно и разборчиво, соблюдая разметку страницы. Не забудьте указать номер задания, на которое Вы отвечаете, например, 31.

Условия задания переписывать не нужно.

Все бланки и листы с контірольными измерительными материалами рассметриваются в комплен Все бланки и листы с контірольными измерительными материалами рассметриваются в комплен V 30 C_2 (SO_4) + 3 H_2O_2 + 10 N 0 H - 2 M_2 G O_4 + 3 N O_2 O_4 + 8 H_2O_2 - O_4 O_4 + 2 O_4 O_4 + 2 O_4 O_4 - O_4 O_4 O_4 - O_4 O_4 O_4 - O_4 O_4 O

2) 4NO. + O. + 2HO -> 4HNO. 3) FeO+4HNO, -> Fe(NO), + NO, 1+24,0 4) 2 Fe (NO3) + 3K, CO2 + 3H, O - 2 Fe (OH) + + 6 KNO3 + 3 CO2 132 1) CH, = CH-CH=CH2 + H2 WATE CH3-CH=CH-CH4 2) 5 CH2 - CH = CH - CH3 +8 KUlnO, + 12 H250, -> 10 CH3 - Cou + + 4 KoSO, + 8 Mn 30, + 12 HO 3) CH3 - C= OH + Cl2 Proper CH2 - COH + HCl 4) CH - COH + 2 M3 - CH2 - COH + M4 Cl Cl M1 cue no organi

N33 N (auso 5 H20) = 250 Tueses = 0, 15 mans

m (les 0,) = 0,15 mans · 160 r/ mans = 241, cu-no, mpp (lus 0) = -242 = 1202

1) Fe + Cuson - Feson + Cut

Pariem nacion Feso, u lu legy no van-ly be-ba listo;

 $n(lid) = n(lid)^{Q} = 0.15 usus; m(lid) = 0.15 usus \cdot 64 rhusus = 96 r.$ $n(FeSQ_{q}) = n(lid)^{Q} = 0.15 usus; m(FeSQ_{q}) = 0.15 usus \cdot 152 rhusus = 228 r$

Normalmoure (Fe) = 0,2 mars - 9 PRucus = 905 mans

2) Fe + 450, - FeSO, + 1/2 1

m (450) = 1002.0,2=202; n(4,50) = st Juious = 0,2 mons, mo come.

Sacriem naccoi teso, u H, begy no new-by be-ba te:

N(FeSQ) = N(Fe) = 905 wave; m(FeSQ) = 905 wave · 152 rhusus = 7562.

N (H2) = n (Fe) = 905 ware; m (H2) = 905 ware 2 huare = Q11.

mp-pa = 120,+ 100,+ 11,21-9,62-0,12 = 221,57, 100% = 13,7 % m (Fest) = 221,52 -100% = 13,7 %

	8	Ep	иный г	осуда	эрствен	ный э	кзамен -	2017	
			лиительн	еый бла		6 Ng 2			11111
		Код региона	Код предмета		Название предмета		2 74990	6 75587	7 1 II
2202		6 1	0 4	X N	и			Pr	езера - б
		Следующи дополнительн бланк ответов	Rus				Fluct Nº 2		
		Перепишите Отвечая на Не забудьте Усповия зад	значения поле задания с РАЗЕ указать номер ания переписы	ЗЕРНУТЫМ задания, н вать не нух	ОТВЕТОМ, пиши а которое Вы отв кно.	пе аккуратно ечаете, напр		юдая разметку с	траницы.
89			Данный	бланк исп	юльзовать то	лько после	заполнения осно	еного бланка	omeemoe N9 2
1.	94 I	yeme,	m(d) = d	100r, n	wya mle	()= 45,	452°, т l О	= 48,48h;)	m(H=
- 0	,07 2.	n (0)=	45,452 12 1 human	-=31	7875.uour				
			12 Lucis						
		n (0)=	48, 482 16 2 hueus	= 303 e	huaus				
nl	(): n	(H):n(0)=378	75:60	7:303=1,	25:2:	1=5:8:4,6	The Ox	
0	20	CII	CII	CIN	B =0			A Market Street Control	
OH					MON OH				
5	CH2 CA	u GH	+ 8 Kil	lnOy -	+ 12 HzSt	Q->	on c-cu.	-C4/2-C4/2-C	OH+
	èн, -	_СН2			insO4 + 4 Kz				
			=		/				